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Abstract
The distribution of fat in the human body is related to hemodynamic and metabolic 
homeostasis. Brown fat is inversely related to body mass index and is associated 
with a lower probability of developing diabetes. Beige adipose tissue shares some 
functional characteristics with brown adipose tissue. White adipose tissue consti-
tutes the majority of the fatty tissue and is mainly distributed in the subcutaneous 
and abdominal cavity. Intra-abdominal white fat has gained prominence in recent 
years for its association with cardiovascular risk factors and higher cardiovascular 
mortality. This review article discusses the human adaptation in the environment, 
a sympathovagal and hypothalamic-pituitary-adrenal imbalance as a possible 
cause of increased visceral adiposity and its consequences on cardiometabolism.
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Introduction

The adaptation of human beings to the environ-
ment over thousands of years was gradual. Pos-
sibly the fight for survival contributed to the 
development of adaptive responses that were in-
corporated into the genes of the human organism 
and underwent changes over time. A response 
to environmental stress, well known today, was 
described by Cannon and De La Paz in 19111 as a 
fight-or-flight reflex. The stress coming from the 
environment activates the cerebral cortex and is 
directed to centres (areas) in the midbrain that 
regulate our homeostasis. According to Cannon’s 
description,1 the fight-or-flight reaction is char-
acterised by neuroadrenergic activation and cat-
echolamine release. The catecholamines released 
in the nerve endings and blood circulation will 
have an effect on different parts of the body, pre-
paring for fight or flight. Among the changes that 
occur in the body due to the reflex, the following 
stand out: increased blood pressure, vasodilation 
of blood vessels in the skeletal musculature, heart 

and brain, vasoconstriction in the blood vessels 
to the intestine and kidneys, muscle relaxation 
smooth bowel and bladder, bronchodilation, in-
creased heart rate and heart contraction force, 
mydriasis, increased gluconeogenesis, increased 
liver glycolysis, decreased fluid secretion in most 
glands.

Is there a relationship of the fight-or-flight 
(chronic) reaction with the clustering of car-
diovascular risk factors (metabolic syndrome), 
with a high prevalence in the adult population in 
a large number of countries in the world?2 This 
clustering of cardiovascular risk factors has been 
much discussed in the last 30 years. However, 
the main pathophysiological mechanism for this 
condition remains unclear. Insulin resistance has 
been identified as the main pathophysiological 
mechanism for the association of visceral obesity 
with other risk factors (dyslipidaemia, hypergly-
caemia, hypertension). According to observations 
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presented in this paper, there is strong evidence 
that sympathovagal imbalance and activation of 
the hypothalamic-pituitary-adrenal (HPA) axis 
may be responsible for the visceral adiposity syn-
drome (VAS).3 In this review the different types 
of fat in the body, visceral adiposity and the im-
plication of visceral adiposity in cardiometabo-
lism will be addressed.

Fat tissue is the body’s largest energy reserve. The 
main component of adipose tissue (triglycerides) 
is formed from the two largest caloric sources in 
nature: carbohydrates and fat. Today, it is known 
that adipose tissue performs different functions 
in the body. Fat cells are classified into brown, 
beige and white fat. These cells are distributed in 
different places in the body so that each group of 
fat cells performs its function independently, but 
integrated.

Brown adipose tissue (BAT) has the function of 
providing heat (thermogenesis) to the body and 
becomes more evident in positron emission to-
mography/computerised tomography (PET/CT) 
images when the individual is exposed to cold. 
Leitnera et al, using the PET/CT technique, de-
scribed the anatomical distribution and function-
al capacity of BAT in non-obese and obese individ-
uals after exposure to cold.4 BAT is predominant 
in women and has an inverse relationship with 
the body mass index.5 In morbid obese patients 
BAT is functionally less active and it is expressed 
again after weight loss in this population.6 Due to 
its inverse relationship with the body mass index, 
ability to expend energy in form of heat, and its 
association with a lower risk of type 2 diabetes, 
BAT has been seen as a therapeutic target.7

The existence of adipose tissue other than brown 
and white, biochemically capable of producing 
heat, was found by Petrović et al in 2010.8 Beige 
adipose tissue, adipocytes infiltrating white ad-
ipose tissue (WAT), share some functional char-
acteristics with brown adipocytes. However, the 
thermogenic capacity of beige adipocytes is only 
10 % of brown adipocytes.9 Better knowledge of 
the origin of beige adipose tissue from physiolog-
ical and pharmacological stimuli can result in a 
greater probability of using these adipocytes as a 
therapeutic target. According to Shao et al10, 11 the 
use of transcription factors to recruit WAT such 

as thermogenic fat (brown/beige) is a promising 
therapeutic opportunity for the future.

WAT constitutes most of the fat tissue in the hu-
man body and is located mainly in the subcu-
taneous and abdominal cavity. The increase in 
abdominal circumference does not necessarily 
represent a large amount of visceral adipose tis-
sue (VAT), as expansion of subcutaneous abdomi-
nal fat may predominate in some individuals with 
weight gain.12 The visceral adipose tissue (in-
tra-abdominal) has several characteristics that 
differentiate it from subcutaneous adipose tissue 
(SAT): larger adipocytes, venous drainage to the 
portal system, greater sensitivity of adrenergic 
receptors (b3 and α2) to catecholamine stimula-
tion, higher level of beta adrenergic receptors 3.13 
In addition to the structural, functional and au-
tonomic modulation differences, VAT is different 
from SAT in relation to gene expression.14, 15 The 
main focus of this review is to discuss a possible 
mechanism for concentration of active visceral 
white adipose tissue in the abdominal cavity, the 
autonomic modulation and the cardiometabolic 
reflex resulting from this active adipose tissue.

The grouping of cardiovascular risk factors that in-
cludes visceral fat (central obesity), dyslipidaemia, 
high blood glucose and high blood pressure gained 
greater prominence based on the observations of 
Reaven in 1988.16 However, in 1761 JB Morgagni 
had already drawn attention for the association 
between visceral obesity, hypertension, hyperuri-
caemia, atherosclerosis and the obstructive sleep 
apnoea syndrome.17 Since Morgagni’s observations 
until today, different authors have drawn attention 
to the association of obesity and other risk factors 
with cardiovascular disease.18, 19 Based on the ob-
servations of Reaven,16 different definitions for 
this grouping of risk factors emerged and are still 
in force today.20-23

However, in recent years, much more has been 
learned about the components of the grouping of 
cardiovascular risk factors described by Reaven16 
and their possible pathophysiological mechanisms. 
Uric acid as described by Morgagni et al17, 24 and 
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other substances seem to be part of this risk fac-
tor grouping. Adiponectin, for example, emerged 
as an important component and biomarker for 
this grouping of risk factors.25-27 For these rea-
sons presented here and others, this grouping of 
risk factors is seen as a more complex syndrome, 
whose main pathophysiological mechanism is 
activation of the sympathetic nervous system 
(SNS).

There is a tendency in the literature to associate 
increased sympathetic tone with obesity and co-
morbidities.28 Experts in the assessment of sym-
pathetic activity have associated overweight, 
obesity and metabolic alterations as possible 
causes of increased sympathetic activity.29 How-
ever, some evidence points to the increased ac-
tivity of the SNS and of the HPA axis as a cause 
of visceral obesity and comorbidities.30, 31 This 
increase in sympathetic activity and greater acti-
vation of the HPA axis would occur from environ-
mental factors (salt, stress), especially in those 
who have a genetic predisposition to it. Children 
of hypertensive parents, for example, would be 
a population predisposed to develop visceral 
obesity and metabolic alterations. In this sense, 
higher values   for body mass index (BMI), blood 
pressure, insulin, insulin-glucose ratio, norepi-
nephrine and lower HDL-cholesterol values   in 
normotensive young children of malignant hy-
pertensive parents have been observed.32 In the 
review by Feber et al33 they draw attention to the 
importance of the sympathetic switch hyperac-
tivity in the pathophysiogenesis of hypertension 
and its relationship with central obesity in chil-
dren.

SNS, hypertension, and insulin resistance - the 
grouping of risk factors resulting from increased 
activity of visceral fat, VAS, has as likely and main 
initial mechanism and in its maintenance the hy-
peractivation of the SNS. Thorp and Schlaich34 
discussed the importance of the SNS in regulat-
ing metabolism and propose sympathetic hyper-
activity as a possible pathophysiological mecha-
nism of metabolic abnormalities. They also point 
to the chronic increase in sympathetic activity 
as a potential cause of “metabolic syndrome” 
through increased blood pressure, insulin re-
sistance, increased triglycerides and obesity. 
In addition, the skeletal muscle of the obese hy-
pertensive patient extracts less glucose when 
stimulated compared to the normotensive one, 
possibly due to changes in microcirculation re-

sulting from hypertension.35 On the other hand, 
the use of prazosin, an alpha 1 adrenergic recep-
tor blocker, resulted in an improvement in insulin 
resistance in obese hypertensive patients.36 In 
the study by Grassi et al,37 sympathetic activity, 
assessed by microneurography, was greater in 
patients with clustering of risk factors and even 
greater in those in which hypertension was part 
of the risk factors. These observations point to 
an association of sympathetic activity with high 
blood pressure, insulin resistance and metabol-
ic changes. In a study involving individuals with 
clustering of risk factors for cardiovascular dis-
ease (metabolic syndrome according to ATP III)22 
we showed that those with 3 risk factors or more, 
including hypertension, had a higher low fre-
quency (LF) component in the spectral analysis, 
worse metabolic, inflammatory, prothrombotic 
profile, and lower level of adiponectin compared 
to those without the high blood pressure compo-
nent.38 In this study, the BMI and fat percentage 
were identical in both groups. The activity of the 
SNS is increased at baseline and after different 
types of stress in children of hypertensive pa-
tients even before the development of arterial 
hypertension.39, 40 Thus, the activity of the SNS is 
increased before the onset of hypertension, in the 
initial phase and becomes more evident as the se-
verity of hypertension increases.41

What is the relationship of sympathetic activity 
with hypertension and visceral adiposity? The 
increase in sympathetic activity results in the ac-
tivation of other systems such as the renin-angio-
tensin aldosterone system (RAAS). It is known 
that catecholamines and angiotensin II play an 
important role in vascular and cardiac remodel-
ling and are also related to glucose metabolism. 
Vascular remodelling begins in the endothelium, 
compromising vasodilation, and is influenced by 
the SNS.42 Sympathetic activation compromises 
the endothelium and also results in cardiac and 
vessel smooth muscle hypertrophy.40, 41 In addi-
tion, central noradrenergic abnormality may be 
responsible for the increase in peripheral vascu-
lar tone observed in arterial hypertension.45 The 
SNS activates the RAAS via the b1 receptor. Acti-
vation of the RAAS contributes to greater muscle 
contraction and growth of the vessel involving 
complex mechanisms.46 The increase in smooth 
muscle tone of peripheral vessels, under the influ-
ence of the sympathetic nervous system and the 
RAAS, will result in greater vascular resistance, 
increased afterload and greater cardiac work. A 
consequence of this hemodynamic imbalance will 



be greater metabolic demand and consequently 
the hypertensive patient will have a higher met-
abolic rate at baseline and after physical activi-
ty.47, 48 The greater sympathetic activity resulting 
from environmental factors (stress, salt, …) re-
sults in what the Russians called it in the 1950s 
“cardiovascular neurosis” to explain the patho-
physiology of high blood pressure.49 However, 
this “cardiovascular neurosis” does not just re-
sult in increased blood pressure. In the present 
interpretation, based on current literature, the 
imbalance of the autonomic nervous system (in-
crease in sympathetic activity) results in greater 
demand metabolic, consequently higher energy 
expenditure. The greatest energy expenditure 
will be supplied by fatty acids from visceral fat. 
This increased demand for visceral fat results in 
the differentiation of adipocytes in terms of size 
and function.50 This intra-abdominal (visceral) 
fat deposition we call VAS resulted from a poor 
adaptation to the environment over many years.

Energy expenditure and visceral fat - the body’s 
main sources of energy are carbohydrates and 
fat. Carbohydrates account for approximately 2 
to 8 % and fat replenishes for 92 to 98 % of stored 
energy.51 It is known that basal metabolism ac-
counts for 60-70 % of the total energy expended. 
Since the energy reserve in the form of carbohy-
drates is low, the body with a high metabolic rate, 
as in the case of arterial hypertension,52, 53 will 
use fatty acids as an energy source with greater 
intensity than normotensive individuals. The eas-
iest fat to use is from VAT. In a stressful situation, 
the body increases sympathetic activity and this 
increase in sympathetic activity will result in lip-
olysis to provide fatty acids as an energy source.54 
The chronically activated SNS in hypertensive 
patients41 will contribute to the increase in fatty 
acids and increased fatty acids in the circulation 
purportedly contribute to insulin resistance.52, 53 
Therefore, insulin resistance in VAS may be a con-
sequence changes in microcirculation resulting 
from hypertension,35 and a “competition” of glu-
cose and fatty acid metabolism as described by 
Randle57 for more than 50 years as the “fatty-ac-
id syndrome”. In summary, VAS, called metabolic 
syndrome, may be the result of a higher turnover 
of fatty acids as a result of a higher metabolic de-
mand (increased sympathetic activity).

Visceral adiposity syndrome 
and cardiometabolism

Analysing something complex in a simplistic way, 
we can say that the growth of cardiometabolic 
conditions (obesity, metabolic syndrome, and di-
abetes) in recent years58 may be a consequence 
of an autonomic imbalance (predominance of the 
sympathetic component) that increases the met-
abolic demand resulting in greater mobilisation 
of fatty acids from visceral fat, leading to insulin 
resistance and all the known consequences. Sym-
pathetic activity, assessed by microneurography, 
has a better association between visceral fat (in-
tra-abdominal) than total fat and subcutaneous 
fat.59 Sympathetic activity, assessed using electro-
cardiographic parameters, is also associated with 
visceral fat.60 In addition to activation of the SNS 
to the VAT the activation of the HPA axis may be 
related to the pathophysiogenesis of the VAS,61 
as observed by Prof Bjorntorp.62 Everything indi-
cates that hyperactivity of the SNS and hyperac-
tivity of the HPA axis are supporting factors in the 
pathophysiology of VAS.

The body’s energy homeostasis and the function of 
some organs are modulated by the autonomic ner-
vous system (sympathetic component and para-
sympathetic). Sympathetic innervation of WAT is 
well known.63 Parasympathetic innervation of VAT 
was reported based on an experimental study by 
Kreier et al.64 Currently, the role of the parasym-
pathetic nervous system in innervation of VAT has 
become increasingly evident.65 From this infor-
mation, it can be speculated about the sympatho-
vagal imbalance in the VAT as a possible origin of 
several alterations such as: lipolysis/lipogenesis, 
increase in fatty acids, insulin resistance, produc-
tion of a large number of adipocytokines with dif-
ferent functions in organs and cells. This results in 
changes in cardiometabolism and increased car-
diovascular risk. This sympathovagal imbalance 
may have its origin in the central nervous system 
and may contribute to the above-mentioned al-
terations and to the production of more than 50 
adipocytokines (biologically active molecules).66 
Thus, it seems that WAT keeps up hyperactive and 
exerts a pleiotropic action66 to supply an increased 
metabolic demand, a consequence of sympathetic 
hyperactivity47 and possible activation of the hy-
pothalamic-pituitary-adrenal axis.

In summary, a primary change in the central ner-
vous system results in increased sympathetic ac-
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